How the dynamics of the metal-binding loop region controls the acid transition in cupredoxins.
نویسندگان
چکیده
Many reduced cupredoxins undergo a pH-dependent structural rearrangement, triggered by protonation of the His ligand belonging to the C-terminal hydrophobic loop, usually termed the acid transition. At variance with several members of the cupredoxin family, the acid transition is not observed for azurin (AZ). We have addressed this issue by performing molecular dynamics simulations of AZ and four mutants, in which the C-terminal loop has been replaced with those of other cupredoxins or with polyalanine loops. All of the loop mutants undergo the acid transition in the pH range of 4.4-5.5. The main differences between AZ and its loop mutants are the average value of the active site solvent accessible surface area and the extent of its fluctuations with time, together with an altered structure of the water layer around the copper center. Using functional mode analysis, we found that these variations arise from changes in nonbonding interactions in the second coordination sphere of the copper center, resulting from the loop mutation. Our results strengthen the view that the dynamics at the site relevant for function and its surroundings are crucial for protein activity and for metal-containing electron transferases.
منابع مشابه
Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملInvestigation of Polymorphisms in Non-Coding Region of Human Mitochondrial DNA in 31 Iranian Hypertrophic Cardiomyopathy (HCM) Patients
The D-loop region is a hot spot for mitochondrial DNA (mtDNA) alterations, containing two hypervariable segments, HVS-I and HVS-II. In order to identify polymorphic sites and potential genetic background accounting for Hypertrophic CardioMyopathy (HCM) disease, the complete non-coding region of mtDNA from 31 unrelated HCM patients and 45 normal controls were sequenced. The sequences were aligne...
متن کاملDetermination of the Binding Constant of Terbium-Transferrin
Apotransferrin (apo Tf) in 0.1 M N-(2hydroxyethyl)piperazine-N2-ethanesulfanic acid at 25 ˚C and pH 7.4 has been titrated with acidic solution of Tb3+. The binding of Tb3+ at the two specific metal-binding sites of transferrin was followed from the changes in the difference UV spectra at 245 nm. The molar absorptivity per binding site for Tb3+...
متن کاملDirect adaptive fuzzy control of flexible-joint robots including actuator dynamics using particle swarm optimization
In this paper a novel direct adaptive fuzzy system is proposed to control flexible-joints robot including actuator dynamics. The design includes two interior loops: the inner loop controls the motor position using proposed approach while the outer loop controls the joint angle of the robot using a PID control law. One novelty of this paper is the use of a PSO algorithm for optimizing the contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 52 42 شماره
صفحات -
تاریخ انتشار 2013